Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Calcium ; 119: 102871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537434

RESUMO

The stromal interaction molecules (STIMs) are the sarcoplasmic reticulum (SR) Ca2+ sensors that trigger store-operated Ca2+ entry (SOCE) in a variety of cell types. While STIM1 isoform has been the focus of the research in cardiac pathophysiology, the function of the homolog STIM2 remains unknown. Using Ca2+ imaging and patch-clamp techniques, we showed that knockdown (KD) of STIM2 by siRNAs increased SOCE and the ISOC current in neonatal rat ventricular cardiomyocytes (NRVMs). Within this cardiomyocyte model, we identified the transcript expression of Stim2.1 and Stim2.2 splice variants, with predominance for Stim2.2. Using conventional and super-resolution confocal microscopy (STED), we found that exogenous STIM2.1 and STIM2.2 formed pre-clusters with a reticular organization at rest. Following SR Ca2+ store depletion, some STIM2.1 and STIM2.2 clusters were translocated to SR-plasma membrane (PM) junctions and co-localized with Orai1. The overexpression strategy revealed that STIM2.1 suppressed Orai1-mediated SOCE and the ISOC current while STIM2.2 enhanced SOCE. STIM2.2-enhanced SOCE was also dependent on TRPC1 and TRPC4. Even if STIM2 KD or splice variants overexpression did not affect cytosolic Ca2+ cycling, we observed, using Rhod-2/AM Ca2+ imaging, that Orai1 inhibition or STIM2.1 overexpression abolished the mitochondrial Ca2+ (mCa2+) uptake, as opposed to STIM2 KD. We also found that STIM2 was present in the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) by interacting with the inositol trisphosphate receptors (IP3Rs), voltage-dependent anion channel (VDAC), mitochondrial Ca2+ uniporter (MCU), and mitofusin-2 (MNF2). Our results suggested that, in NRVMs, STIM2.1 constitutes the predominant functional variant that negatively regulates Orai1-generated SOCE. It participates in the control of mCa2+ uptake capacity possibly via the STIM2-IP3Rs-VDAC-MCU and MNF2 complex.


Assuntos
Cálcio , Miócitos Cardíacos , Molécula 1 de Interação Estromal , Animais , Ratos , Transporte Biológico , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Homeostase , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
2.
Front Cell Infect Microbiol ; 13: 1138232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260709

RESUMO

Human papillomaviruses (HPVs) are highly prevalent commensal viruses that require epithelial stratification to complete their replicative cycle. While HPV infections are most often asymptomatic, certain HPV types can cause lesions, that are usually benign. In rare cases, these infections may progress to non-replicative viral cycles associated with high HPV oncogene expression promoting cell transformation, and eventually cancer when not cleared by host responses. While the consequences of HPV-induced transformation on keratinocytes have been extensively explored, the impact of viral replication on epithelial homeostasis remains largely unexplored. Gap junction intercellular communication (GJIC) is critical for stratified epithelium integrity and function. This process is ensured by a family of proteins named connexins (Cxs), including 8 isoforms that are expressed in stratified squamous epithelia. GJIC was reported to be impaired in HPV-transformed cells, which was attributed to the decreased expression of the Cx43 isoform. However, it remains unknown whether and how HPV replication might impact on the expression of Cx isoforms and GJIC in stratified squamous epithelia. To address this question, we have used 3D-epithelial cell cultures (3D-EpCs), the only model supporting the productive HPV life cycle. We report a transcriptional downregulation of most epithelial Cx isoforms except Cx45 in HPV-replicating epithelia. At the protein level, HPV replication results in a reduction of Cx43 expression while that of Cx45 increases and displays a topological shift toward the cell membrane. To quantify GJIC, we pioneered quantitative gap-fluorescence loss in photobleaching (FLIP) assay in 3D-EpCs, which allowed us to show that the reprogramming of Cx landscape in response to HPV replication translates into accelerated GJIC in living epithelia. Supporting the pathophysiological relevance of our observations, the HPV-associated Cx43 and Cx45 expression pattern was confirmed in human cervical biopsies harboring HPV. In conclusion, the reprogramming of Cx expression and distribution in HPV-replicating epithelia fosters accelerated GJIC, which may participate in epithelial homeostasis and host immunosurveillance.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Humanos , Conexinas/genética , Conexinas/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Papillomavirus Humano , Junções Comunicantes/metabolismo , Epitélio , Comunicação Celular/fisiologia , Transformação Celular Neoplásica
3.
Materials (Basel) ; 16(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36902927

RESUMO

For several decades, various peptides have been under investigation to prevent ischemia/reperfusion (I/R) injury, including cyclosporin A (CsA) and Elamipretide. Therapeutic peptides are currently gaining momentum as they have many advantages over small molecules, such as better selectivity and lower toxicity. However, their rapid degradation in the bloodstream is a major drawback that limits their clinical use, due to their low concentration at the site of action. To overcome these limitations, we have developed new bioconjugates of Elamipretide by covalent coupling with polyisoprenoid lipids, such as squalenic acid or solanesol, embedding self-assembling ability. The resulting bioconjugates were co-nanoprecipitated with CsA squalene bioconjugate to form Elamipretide decorated nanoparticles (NPs). The subsequent composite NPs were characterized with respect to mean diameter, zeta potential, and surface composition by Dynamic Light Scattering (DLS), Cryogenic Transmission Electron Microscopy (CryoTEM) and X-ray Photoelectron Spectrometry (XPS). Further, these multidrug NPs were found to have less than 20% cytotoxicity on two cardiac cell lines even at high concentrations, while maintaining an antioxidant capacity. These multidrug NPs could be considered for further investigations as an approach to target two important pathways involved in the development of cardiac I/R lesions.

4.
Eur J Pharmacol ; 944: 175562, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736940

RESUMO

Phosphodiesterases (PDE) type 3 and 4 promote vasoconstriction by hydrolysing cAMP. In experimental heart failure (HF), PDE3 makes PDE4 redundant in aorta, but it is not known if this occurs in resistance vessels, such as mesenteric artery. As PDE2 is increased in the failing myocardium, its possible role in the vasculature also needs to be addressed. Here, the function of PDE2, PDE3 and PDE4 in rat mesenteric arteries was characterized in experimental HF. Mesenteric arteries were isolated from rats sacrificed 22 weeks after surgical stenosis of the ascending aorta (HF), or Sham surgery. PDE inhibitors were used to probe isoenzyme contributions in enzymatic and isometric tension assays. PDE2 and PDE4 activities, but not PDE3 activity, facilitate contraction produced by the thromboxane analogue U46619 in Sham arteries, while in HF all three isoenzymes contribute to this response. NO synthase inhibition by L-NAME abolished the action of the PDE2 inhibitor. L-NAME eliminated the contribution of PDE4 in HF, but unmasked a contribution for PDE3 in Sham. PDE3 and PDE4 activities attenuated relaxant response to ß-adrenergic stimulation in Sham and HF. PDE2 did not participate in cAMP or cGMP-mediated relaxant responses. PDE3 and PDE4 cAMP-hydrolysing activities were smaller in HF mesenteric arteries, while PDE2 activity was scarce in both groups. Endothelial cells and arterial myocytes displayed PDE2 immunolabelling. We highlight that, by contrast with previous observations in aorta, PDE4 participates equally as PDE3 in contracting mesenteric artery in HF. PDE2 activity emerges as a promoter of contractile response that is preserved in HF.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Insuficiência Cardíaca , Ratos , Animais , Ratos Wistar , Células Endoteliais , NG-Nitroarginina Metil Éster , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Artérias Mesentéricas , 3',5'-AMP Cíclico Fosfodiesterases
5.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36355522

RESUMO

Trichomonas vaginalis, a protozoan parasite specific to the human genital tract, is one of the most common sexually transmitted pathogens. Its pathogenicity is strongly associated with its expression of a broad array of proteases triggering cytotoxic effects in host epithelial cells. Vaginal microbiota-associated Lactobacillus, including those of L. gasseri in particular, can counteract T. vaginalis pathogenesis, but the mechanisms involved have yet to be clarified. T. vaginalis strain G3 (Tv G3) cytotoxicity was assessed by examining cell morphology, cell detachment, and fluorescent labeling of the F-actin cytoskeleton and immunolabeling of vinculin-position focal adhesions (FAs) by confocal laser scanning electron microscopy on confluent cervicovaginal epithelial HeLa cell monolayers. The inhibitory effects of bacterial cells and secreted products of L. gasseri ATCC 9857 and KS 120.1 on the Tv G3 viability and parasite deleterious effects on HeLa cells were investigated. Pre-adhering L. gasseri cells delayed but did not inhibit Tv G3-induced cell detachment, F-actin cytoskeleton disorganization and the disappearance of vinculin-positive focal FAs. L. gasseri KS 120.1 secretion products had a rapid parasiticide activity by killing time- and concentration-dependent Tv G3 parasites after direct contact. By killing Tv G3 parasites already associated with the epithelial cells, secretion products have abolished parasite-induced cell detachment. Our findings suggest that vagina microbiota-associated L. gasseri creates a physical barrier and exerts pharmacological-type mechanisms to counteract the deleterious cytotoxic effects of T. vaginalis.

6.
Plant Physiol ; 189(4): 2298-2314, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736508

RESUMO

Cystathionine-ß-synthase (CBS) domains are found in proteins of all living organisms and have been proposed to play a role as energy sensors regulating protein activities through their adenosyl ligand binding capacity. In plants, members of the CBSX protein family carry a stand-alone pair of CBS domains. In Arabidopsis (Arabidopsis thaliana), CBSX1 and CBSX2 are targeted to plastids where they have been proposed to regulate thioredoxins (TRXs). TRXs are ubiquitous cysteine thiol oxido-reductases involved in the redox-based regulation of numerous enzymatic activities as well as in the regeneration of thiol-dependent peroxidases. In Arabidopsis, 10 TRX isoforms have been identified in plastids and divided into five sub-types. Here, we show that CBSX2 specifically inhibits the activities of m-type TRXs toward two chloroplast TRX-related targets. By testing activation of NADP-malate dehydrogenase and reduction of 2-Cys peroxiredoxin, we found that TRXm1/2 inhibition by CBSX2 was alleviated in the presence of AMP or ATP. We also determined, by pull-down assays, a direct interaction of CBSX2 with reduced TRXm1 and m2 that was abolished in the presence of adenosyl ligands. In addition, we report that, compared with wild-type plants, the Arabidopsis T-DNA double mutant cbsx1 cbsx2 exhibits growth and chlorophyll accumulation defects in cold conditions, suggesting a function of plastidial CBSX proteins in plant stress adaptation. Together, our results show an energy-sensing regulation of plastid TRX m activities by CBSX, possibly allowing a feedback regulation of ATP homeostasis via activation of cyclic electron flow in the chloroplast, to maintain a high energy level for optimal growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Cistationina beta-Sintase/química , Oxirredução , Plastídeos/metabolismo , Compostos de Sulfidrila/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
7.
Cells ; 11(6)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326419

RESUMO

Reshaping the intestinal microbiota by the ingestion of fiber, such as pectin, improves alcohol-induced liver lesions in mice by modulating bacterial metabolites, including indoles, as well as bile acids (BAs). In this context, we aimed to elucidate how oral supplementation of pectin affects BA metabolism in alcohol-challenged mice receiving feces from patients with alcoholic hepatitis. Pectin reduced alcohol liver disease. This beneficial effect correlated with lower BA levels in the plasma and liver but higher levels in the caecum, suggesting that pectin stimulated BA excretion. Pectin modified the overall BA composition, favoring an augmentation in the proportion of hydrophilic forms in the liver, plasma, and gut. This effect was linked to an imbalance between hydrophobic and hydrophilic (less toxic) BAs in the gut. Pectin induced the enrichment of intestinal bacteria harboring genes that encode BA-metabolizing enzymes. The modulation of BA content by pectin inhibited farnesoid X receptor signaling in the ileum and the subsequent upregulation of Cyp7a1 in the liver. Despite an increase in BA synthesis, pectin reduced BA serum levels by promoting their intestinal excretion. In conclusion, pectin alleviates alcohol liver disease by modifying the BA cycle through effects on the intestinal microbiota and enhanced BA excretion.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Animais , Ácidos e Sais Biliares , Humanos , Camundongos , Pectinas/farmacologia
8.
Int J Pharm ; 617: 121577, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167901

RESUMO

Sphingomyelin nanosystems have already shown to be promising carriers for efficient delivery of anticancer drugs. For further application in the treatment of pancreatic tumor, the investigation on relevant in vitro models able to reproduce its physio-pathological complexity is mandatory. Accordingly, a 3D heterotype spheroid model of pancreatic tumor has been herein constructed to investigate the potential of bare and polyethylene glycol-modified lipid nanosystems in terms of their ability to penetrate the tumor mass and deliver drugs. Regardless of their surface properties, the lipid nanosystems successfully diffused through the spheroid without inducing toxicity, showing a clear safety profile. Loading of the bare nanosystems with a lipid prodrug of gemcitabine was used to evaluate their therapeutic potential. While the nanosystems were more effective than the free drug on 2D cell monocultures, this advantage, despite their efficient penetration capacity, was lost in the 3D tumor model. The latter, being able to mimic the tumor and its microenvironment, was capable to provide a more realistic information on the cell sensitivity to treatments. These results highlight the importance of using appropriate 3D tumor models as tools for proper in vitro evaluation of nanomedicine efficacy and their timely optimisation, so as to identify the best candidates for later in vivo evaluation.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Nanomedicina/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Esferoides Celulares , Esfingomielinas/farmacologia , Microambiente Tumoral
9.
JHEP Rep ; 3(2): 100230, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33665587

RESUMO

BACKGROUND & AIMS: Bile-acid metabolism and the intestinal microbiota are impaired in alcohol-related liver disease. Activation of the bile-acid receptor TGR5 (or GPBAR1) controls both biliary homeostasis and inflammatory processes. We examined the role of TGR5 in alcohol-induced liver injury in mice. METHODS: We used TGR5-deficient (TGR5-KO) and wild-type (WT) female mice, fed alcohol or not, to study the involvement of liver macrophages, the intestinal microbiota (16S sequencing), and bile-acid profiles (high-performance liquid chromatography coupled to tandem mass spectrometry). Hepatic triglyceride accumulation and inflammatory processes were assessed in parallel. RESULTS: TGR5 deficiency worsened liver injury, as shown by greater steatosis and inflammation than in WT mice. Isolation of liver macrophages from WT and TGR5-KO alcohol-fed mice showed that TGR5 deficiency did not increase the pro-inflammatory phenotype of liver macrophages but increased their recruitment to the liver. TGR5 deficiency induced dysbiosis, independently of alcohol intake, and transplantation of the TGR5-KO intestinal microbiota to WT mice was sufficient to worsen alcohol-induced liver inflammation. Secondary bile-acid levels were markedly lower in alcohol-fed TGR5-KO than normally fed WT and TGR5-KO mice. Consistent with these results, predictive analysis showed the abundance of bacterial genes involved in bile-acid transformation to be lower in alcohol-fed TGR5-KO than WT mice. This altered bile-acid profile may explain, in particular, why bile-acid synthesis was not repressed and inflammatory processes were exacerbated. CONCLUSIONS: A lack of TGR5 was associated with worsening of alcohol-induced liver injury, a phenotype mainly related to intestinal microbiota dysbiosis and an altered bile-acid profile, following the consumption of alcohol. LAY SUMMARY: Excessive chronic alcohol intake can induce liver disease. Bile acids are molecules produced by the liver and can modulate disease severity. We addressed the specific role of TGR5, a bile-acid receptor. We found that TGR5 deficiency worsened alcohol-induced liver injury and induced both intestinal microbiota dysbiosis and bile-acid pool remodelling. Our data suggest that both the intestinal microbiota and TGR5 may be targeted in the context of human alcohol-induced liver injury.

10.
Phytopathology ; 111(7): 1129-1136, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33245256

RESUMO

Trichoderma gamsii T6085 has been investigated for many years as a beneficial isolate for use in the biocontrol of Fusarium head blight (FHB) of wheat caused primarily by Fusarium graminearum. Previous work focused on application of T6085 to wheat spikes at anthesis, whereas application to soil before or at sowing has received limited attention. In the present study, the competitive ability of T6085 on plant residues against F. graminearum was investigated. Results showed a significant reduction of wheat straw colonization by the pathogen and of the development of perithecia, not only when T6085 was applied alone but also in the presence of a F. oxysporum isolate (7121), well known as a natural competitor on wheat plant residues. T6085 was able to endophytically colonize wheat roots, resulting in internal colonization of the radical cortex area, without reaching the vascular system, as confirmed by confocal microscopy. This intimate interaction with the plant resulted in a significant increase of the expression of the plant defense-related genes PAL1 and PR1. Taken together, competitive ability, endophytic behavior, and host resistance induction represent three important traits that can be of great use in the application of T6085 against FHB not only on spikes at anthesis but potentially also in soil before or at sowing.


Assuntos
Fusarium , Trichoderma , Hypocreales , Doenças das Plantas , Triticum
11.
Genome Biol ; 21(1): 104, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349780

RESUMO

BACKGROUND: Polyploidy is ubiquitous in eukaryotic plant and fungal lineages, and it leads to the co-existence of several copies of similar or related genomes in one nucleus. In plants, polyploidy is considered a major factor in successful domestication. However, polyploidy challenges chromosome folding architecture in the nucleus to establish functional structures. RESULTS: We examine the hexaploid wheat nuclear architecture by integrating RNA-seq, ChIP-seq, ATAC-seq, Hi-C, and Hi-ChIP data. Our results highlight the presence of three levels of large-scale spatial organization: the arrangement into genome territories, the diametrical separation between facultative and constitutive heterochromatin, and the organization of RNA polymerase II around transcription factories. We demonstrate the micro-compartmentalization of transcriptionally active genes determined by physical interactions between genes with specific euchromatic histone modifications. Both intra- and interchromosomal RNA polymerase-associated contacts involve multiple genes displaying similar expression levels. CONCLUSIONS: Our results provide new insights into the physical chromosome organization of a polyploid genome, as well as on the relationship between epigenetic marks and chromosome conformation to determine a 3D spatial organization of gene expression, a key factor governing gene transcription in polyploids.


Assuntos
Cromatina/química , Transcrição Gênica , Triticum/genética , Genoma de Planta , Código das Histonas , Poliploidia , RNA Polimerase II/análise
12.
Plant Physiol ; 173(3): 1735-1749, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28153919

RESUMO

Faithful transmission of the genetic information is essential in all living organisms. DNA replication is therefore a critical step of cell proliferation, because of the potential occurrence of replication errors or DNA damage when progression of a replication fork is hampered causing replicative stress. Like other types of DNA damage, replicative stress activates the DNA damage response, a signaling cascade allowing cell cycle arrest and repair of lesions. The replicative DNA polymerase ε (Pol ε) was shown to activate the S-phase checkpoint in yeast in response to replicative stress, but whether this mechanism functions in multicellular eukaryotes remains unclear. Here, we explored the genetic interaction between Pol ε and the main elements of the DNA damage response in Arabidopsis (Arabidopsis thaliana). We found that mutations affecting the polymerase domain of Pol ε trigger ATR-dependent signaling leading to SOG1 activation, WEE1-dependent cell cycle inhibition, and tolerance to replicative stress induced by hydroxyurea, but result in enhanced sensitivity to a wide range of DNA damaging agents. Using knock-down lines, we also provide evidence for the direct role of Pol ε in replicative stress sensing. Together, our results demonstrate that the role of Pol ε in replicative stress sensing is conserved in plants, and provide, to our knowledge, the first genetic dissection of the downstream signaling events in a multicellular eukaryote.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , DNA Polimerase II/genética , Replicação do DNA , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , DNA Polimerase II/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Hidroxiureia/farmacologia , Microscopia de Fluorescência , Modelos Genéticos , Mutação , Inibidores da Síntese de Ácido Nucleico/farmacologia , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Plant J ; 89(5): 1031-1041, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27943466

RESUMO

Arabidopsis thaliana SNF1-related-kinase 1 (SnRK1)-activating kinase 1 (AtSnAK1) and AtSnAK2 have been shown to phosphorylate in vitro and activate the energy signalling integrator, SnRK1. To clarify this signalling cascade in planta, a genetic- and molecular-based approach was developed. Homozygous single AtSnAK1 and AtSnAK2 T-DNA insertional mutants did not display an apparent phenotype. Crossing of the single mutants did not allow the isolation of double-mutant plants, whereas self-pollinating the S1-/- S2+/- sesquimutant specifically gave approximatively 22% individuals in their offspring that, when rescued on sugar-supplemented media in vitro, were shown to be AtSnAK1 AtSnAK2 double mutants. Interestingly, this was not obtained in the case of the other sesquimutant, S1+/- S2-/-. Although reduced in size, the double mutant had the capacity to produce flowers, but not seeds. Immunological characterization established the T-loop of the SnRK1 catalytic subunit to be non-phosphorylated in the absence of both SnAKs. When the double mutant was complemented with a DNA construct containing an AtSnAK2 open reading frame driven by its own promoter, a normal phenotype was restored. Therefore, wild-type plant growth and development is dependent on the presence of SnAK in vivo, and this is correlated with SnRK1 phosphorylation. These data show that both SnAKs are kinases phosphorylating SnRK1, and thereby they contribute to energy signalling in planta.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fases de Leitura Aberta/genética , Fosforilação/genética , Fosforilação/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
14.
Curr Opin Plant Biol ; 34: 107-113, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27816816

RESUMO

Plastids arose from an endosymbiosis between a host cell and free-living bacteria. One key step during this evolutionary process has been the establishment of coordinated cell and symbiont division to allow the maintenance of organelles during proliferation of the host. However, surprisingly little is known about the underlying mechanisms. In addition, due to their central role in the cell's energetic metabolism and to their sensitivity to various environmental cues such as light or temperature, plastids are ideally fitted to be the source of signals allowing plants to adapt their development according to external conditions. Consistently, there is accumulating evidence that plastid-derived signals can impinge on cell cycle regulation. In this review, we summarize current knowledge of the dialogue between chloroplasts and the nucleus in the context of the cell cycle.


Assuntos
Cloroplastos/metabolismo , Células Vegetais/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Células Vegetais/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/genética , Simbiose/genética , Simbiose/fisiologia
15.
Nucleic Acids Res ; 44(15): 7251-66, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27193996

RESUMO

Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Ciclo Celular/fisiologia , Dano ao DNA , DNA Polimerase II/química , DNA Polimerase II/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , DNA Polimerase II/genética , Proteínas de Ligação a DNA/genética
16.
PLoS One ; 10(10): e0138276, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26457678

RESUMO

Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Citocininas/biossíntese , Alquil e Aril Transferases/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Cromatina/metabolismo , DNA de Plantas/genética , Epigênese Genética , Loci Gênicos/genética , Histonas/metabolismo , Meristema/crescimento & desenvolvimento
17.
Dev Biol ; 407(2): 224-31, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26434917

RESUMO

The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Loci Gênicos , Imunidade Inata/genética , Proteínas Serina-Treonina Quinases/genética , Processos de Determinação Sexual/genética , Alelos , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/ultraestrutura , Epistasia Genética , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Heterozigoto , Masculino , Mutação/genética , NF-kappa B/metabolismo , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética , Transcrição Gênica
18.
Plant Physiol ; 166(1): 152-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25037213

RESUMO

The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Ciclo Celular , Cloroplastos/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Ciclinas/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Plant Cell ; 26(2): 538-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24510722

RESUMO

SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Genes de Plantas , Proteínas de Domínio MADS/genética , Conformação de Ácido Nucleico , Subunidades Proteicas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Temperatura Baixa , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Proteínas de Domínio MADS/metabolismo , Modelos Biológicos , Fotoperíodo , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Polimerase II/metabolismo , Fatores de Tempo
20.
Am J Bot ; 100(2): 391-402, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23378492

RESUMO

PREMISE OF THE STUDY: Zygomorphy has evolved multiple times in angiosperms. Near-actinomorphy is the ancestral state in the early diverging eudicot family Papaveraceae. Zygomorphy evolved once in the subfamily Fumarioideae from a disymmetric state. Unusual within angiosperms, zygomorphy takes place along the transverse plane of the flower. METHODS: We investigated floral development to understand the developmental bases of the evolution of floral symmetry in Papaveraceae. We then assessed the expression of candidate genes for the key developmental events responsible for the shift from disymmetry to transverse zygomorphy, namely CrabsClaw for nectary formation (PapCRC), ShootMeristemless (PapSTL) for spur formation, and Cycloidea (PapCYL) for growth control. KEY RESULTS: We found that an early disymmetric groundplan is common to all species studied, and that actinomorphy was acquired after sepal initiation in Papaveroideae. The shift from disymmetry to zygomorphy in Fumarioideae was associated with early asymmetric growth of stamen filaments, followed by asymmetric development of nectary outgrowth and spur along the transverse plane. Patterns of PapSTL expression could not be clearly related to spur formation. PapCRC and PapCYL genes were expressed in the nectary outgrowths, with a pattern of expression correlated with asymmetric nectary development in the zygomorphic species. Additionally, PapCYL genes were found asymmetrically expressed along the transverse plane in the basal region of outer petals in the zygomorphic species. CONCLUSION: Genes of PapCRC and PapCYL families could be direct or indirect targets of the initial transversally asymmetric cue responsible for the shift from disymmetry to zygomorphy in Fumarioideae.


Assuntos
Evolução Biológica , Flores/crescimento & desenvolvimento , Papaveraceae/crescimento & desenvolvimento , Arabidopsis/genética , Flores/ultraestrutura , Expressão Gênica , Genes de Plantas , Papaveraceae/genética , Papaveraceae/ultraestrutura , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...